Figure caption

Ultrasound imaging could produce far better pictures with a different kind of sound wave. These higher-performing sound waves, so-called shear waves, are usually hard to generate, but now researchers have demonstrated a simple way to produce them. The team designed and tested a filter that transforms easy-to-generate pressure waves into shear waves more efficiently than previous devices. This filter can be easily fabricated with laser micromachining techniques and may lead to higher-resolution industrial and medical ultrasound imaging.

Normally, if waves traveling in one medium encounter a slab of a different medium, they cannot fully pass through. This lack of complete transmission leads to reduced resolution in ultrasonic imaging of the brain, for example, where high-frequency sound waves must penetrate the hard skull before reaching the soft tissue. Longitudinal (pressure) waves suffer this problem more severely than shear waves, the kind that deform the medium perpendicular to their direction of travel. Unfortunately, existing transducers—the devices that generate and sense the waves in ultrasound machines—can’t effectively produce shear waves.

Efforts to convert longitudinal to shear waves have involved sending the incoming waves through a wedge-shaped filter, which in the most recent examples was made from a metamaterial—a structure comprised of a repeating pattern of microscale, sound-scattering columns, for example. But the direction of the shear waves produced by one of these filters is very sensitive to fluctuations in the angle of the incoming waves, which can make the filter hard to use. Also, these filters cannot produce very high shear wave amplitudes, and they are difficult to manufacture.

Yoon Young Kim of Seoul National University in South Korea and his colleagues took a different approach, exploiting a new twist on a textbook phenomenon called Fabry-Pérot resonance (FPR). When sound waves travel through a slab of a medium different from its surroundings, they can be fully transmitted if the slab’s thickness is exactly a multiple of a half wavelength. This full transmission is caused by wave interference between the transmitted and reflected waves inside the slab. Kim and his colleagues found that with a metamaterial slab there can be a similar FPR condition that leads to maximum transmission of a shear wave when the input is a longitudinal wave.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s